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Method – Single layer

● Natural scenes have intrinsic structures like repetition of 
parts and spatial relationships.

● CNNs don’t explicitly model this and are thus 
uninterpretable and non viewpoint-invariant.

● Capsules [2, 4]  seek to model this structure in scenes by 
composing objects out of progressively more meaningful 
parts.

● We propose Local Capsule Hierarchies (LCH): an 
unsupervised generative model based on hierarchical 
sparse coding [3]  which is inspired by the visual cortex of 
the brain.

Figure 1: An example of LCH decomposition on the digit “7” 
from the MNIST dataset. The digit decomposes into 
mid-level parts which decompose into low-level parts

Figure 2: The reconstruction (top) versus the 
target (bottom) for the LCH training.

A single-layer decomposes an image into a sparse linear combination 
σ of N parts with non-negative amplitudes σ.

Each part has its own deformation parameter represented by a unit 
vector θ. We model the deformation by decomposing the part into a 
linear combination in θ of G learned basis functions Φ.

The layer outputs σ and θ are determined by minimizing a cost 
function comprised of reconstruction error (I) and a sparsity 
penalty for σ (II), while enforcing σ to be non-negative and 
letting θ only vary in its angle.

Method – Optimization

In practice, simply optimizing this cost 
function using gradient descent or 
ISTA/FISTA is unstable.

A solution is to use the  Subspace 
Locally Competitive Algorithm [1] 
which is inspired by neuroscience. We 
first define the latent variable u:

Then we optimize u using the following dynamical 
system which introduces competition between the 
parts through the inhibition term (III):

The basis functions are learned through gradient descent 
on the reconstruction error while the inner optimization is 
unrolled with a small fixed number of iterations.

● We seek to test this algorithm with downstream tasks such as 
classification or object detection. Given parse trees of scenes, 
LCH may prove to have certain strengths.

● Extending this to other datasets will test the robustness of 
LCH. Furthermore, adversarial analysis of LCH will expose 
potential strengths.

● Testing data efficiency of this method and experimenting with 
higher-level basis steering can show new applications.

Method – Multilayer
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The higher layers decompose only the amplitudes σ, which can be 
interpreted as a local pooling operation over the  learned deformation  θ.

Figure 3: 4 LCH group examples with 
group size 2


