
DEEP HIERARCHICAL LAPLACIAN SKILL DISCOVERY

Anonymous Authors

ABSTRACT

Temporally-abstracted actions, often referred to as skills or options, provide an
appealing set of benefits for learning how to both explore environments and exe-
cute tasks. But many methods rely on extrinsic reward signal to build good op-
tions which may not be available at train-time or may be expensive to collect. We
therefore focus on the problem of discovering skills via unsupervised environment
interaction. Inspired by the compositionality theorized in biological learning, we
iteratively learn a hierarchy of skills. Specifically, we learn deep Laplacian repre-
sentations on exploration policies utilizing lower level skills. The learned Lapla-
cian representations are then used to create new skills to update the exploration
policy and repeat the process. The result is a feedback loop that learns represen-
tations from skills and skills from representations in order to continually extend
the agent’s capabilities. We show our method composes lower level skills and in-
corporates increasingly complex skills to better explore and plan. Our results dis-
play this method outperforms state-covering and state-novelty methods for solving
long-horizon downstream tasks and exploring environments effectively.

1 INTRODUCTION

General task solving, autonomy, and learning from experience has long taken advantage of Rein-
forcement Learning (RL) (Sutton & Barto, 2018). The RL framework makes a few general assump-
tions and allows for sequential decision making with an agent that interacts with an environment and
acts to maximize its reward. This reward can be designed and tends to capture what the intended
task at hand is, and as a result, the agent can learn how to solve the task by optimizing for the cumu-
lative reward, or return. A major problem in RL is the difficulty that arises when trying to correctly
explore the environment to find a decision making sequence, or policy, that maximizes return in the
sparse-reward case. Classically, the agent has to rely on random chance to run into a high-reward
transition and then continue its search from there. This is especially difficult in long-horizon tasks
where very little signal is given to the agent for it to know if its doing the right thing.

The problem of augmenting RL for better exploration and policy learning has long been studied.
One line of work is the use of novelty metrics to intrinsically reward the agent for exploring new
states in the environment, such as Random Network Distillation (Burda et al., 2018), curiosity,
count-based metrics, or empowerment (Bellemare et al., 2016; Pathak et al., 2017; Klyubin et al.,
2005). However, since these methods only operate as reward bonuses, they cannot transfer well to
other areas of the state space and do not encourage the chaining of interesting behaviors together. As
a result, they are often times only used to explore for accomplishing a single, specified task instead
of providing primitives to solve many tasks. A more desirable approach would be a task-agnostic
one that creates modular, re-usable behaviors. Consider the case of a robotic system for search and
rescue. A system like this would require general exploration skills for reaching unknown parts of
the area, not just for a single task it was trained on. Furthermore, to rapidly complete new task
specifications, it must have general knowledge about the environment and its own capabilities.

We study the set of approaches focused on creating new, temporally extended actions that consist of
low-level action sequences. These are commonly referred to as options or skills and are policies that
can be run to help both exploration and downstream planning (Sutton et al., 1999). As opposed to
exploration bonuses, these option learning methods learn explicit new policies for potential compo-
sition. Favorably, these could be used in a task-agnostic way to assist planning and exploration. But
most methods for finding interesting options rely on a good extrinsic reward-signal and thus do not
allow for creating a general skill library. (Bacon et al., 2016; Xu et al., 2022; Pertsch et al., 2020).

1

Skill DAG

Exploration

Module
Replay

Buffer

Reward

Learning

Reinforcement

Learning
Add

Use

Use

Add

Use

Use

U
se

A
d
d

Skill DAG

Primitives
Extrinsic

Reward

Reinforcement

Learning

Figure 1: Left: the pretraining phase feedback loop that LaSH utilizes to build a Skill Directed
Acyclic Graph (DAG). It is flexible to any RL algorithm, intrinsic reward, and exploration method.
Right: the task solving phase of LaSH which involves using the DAG to learn a policy to solve a
task.

As a result, we look towards the problem setting that utilizes intrinsic motivation bonuses to learn ex-
plicit general skills, thus affording us a reward-free way of getting composable policies for extended
exploration and downstream planning. In this way, it’s a combination of classic option learning and
classic intrinsic motivation and thus enjoys multiple benefits. Furthermore, it allows for an agent to
pretrain in an environment and be ready for fast adaptation to new tasks in that environment.This
study is often referred to as skill discovery.

Many reward-free skill discovery approaches use the mutual information between states and skills
to make distinct behaviors (Eysenbach et al., 2018), but these behaviors have no incentive to cover
the environment well – which is imperative for sparse, long-horizon tasks. Furthermore, many skill
discovery methods lack the ability to continually use existing capabilities to bootstrap learning of
more complex behaviors, as a human would. If we seek to learn increasingly complex behaviors
from current behaviors, we need corresponding higher level representations of the environment to
learn from. Meanwhile these higher level representations are only helpful if they reflect the agent’s
current capabilities. Thus, an iterative approach to skill discovery that interweaves skill learning
and representation learning is one that we desire (Machado et al., 2023). A well-studied approach
for creating representations from current agent capabilities for defining options is the proto-value
function (PVF) which can be acquired from the graph Laplacian eigenvectors (Mahadevan, 2005;
Johns & Mahadevan, 2007; Mahadevan & Maggioni, 2007b).

We elect to utilize a deep graph Laplacian, a model of temporal diffusion in an environment, to create
an intrinsic reward signal that incorporates the environment’s structure and the agent’s capabilities.
We then utilize vanilla RL, specifically DQN (Mnih et al., 2013), to learn explicit, re-usable skills
that maximize intrinsic return. We build upon existing work by running a feedback loop to chain
the current level of skills learned thus far to re-learn a temporal diffusion graph Laplacian and,
subsequently, new options that are more temporally extended. We show our method, LaSH, is
capable of planning in long-horizon sparse-reward tasks when used with RL after pretraining. To
our knowledge, it is the first deep Laplacian method for creating explicit skill hierarchies. Our
work’s main contributions are:

1. A reward-free iterative feedback loop to create a continually evolving skill hierarchy.
2. The usage of this hierarchy to augment the action space for extrinsic planning.
3. The greedy chaining of skills for learning incrementally more complex representations

during exploration.

2 RELATED WORK
Methods for solving temporally abstracted RL have mostly been introduced via the Hierarchical
RL (HRL) framework where there are two controllers: one to choose options, and one to execute
them (Sutton et al., 1999; Precup, 2000). Feudal RL is a similar technique for doing HRL from the
perspective of subgoal commands (Dayan & Hinton, 1992; Vezhnevets et al., 2017; Nachum et al.,

2

Figure 2: Left: We show the Laplacian representation as a heatmap overlaid on the 4-room environ-
ment. Right: We also show the reward curves over time as the models are run with extrinsic sparse
reward access.

2018). The Hierarchy of Abstract Machines (HAM) (Parr & Russell, 1997; Bai & Russell, 2017)
framework also tackles the HRL problem through encoding prior knowledge of the MDP structure to
simplify policy learning. Central to most HRL methods is an extrinsic reward which is used to tune
the low-level option controller and the high-level meta-controller (Bacon et al., 2016; Frans et al.,
2017; Bagaria & Konidaris, 2020), some minimal supervision or proxy task (Florensa et al., 2017;
Tessler et al., 2016), or the inclusion of demonstrations (Fox et al., 2017; Krishnan et al., 2017).
The use of these task-specific signals can create degenerate behaviors requiring regularizers. (Harb
et al., 2017; Alexander et al., 2016; Khetarpal et al., 2020; Kulkarni et al., 2016a). The unsupervised
setting, on the other hand, remains agnostic to tasks allowing for general options.

Simple skill discovery methods have been proposed using state visitation statistics, RRT, (LaValle,
1998) or graph theory to determine bottleneck states (i.e. states that are essential to travel between
connected components of the environment). However, these methods are difficult to scale and and
may require special hand-engineered heuristics. Importantly, explicit state graphs hinder the ability
to generalize across similar states which can then lead to requiring exhaustive search to get good
bottlenecks (McGovern & Barto, 2001; Menache et al., 2002; Iba, 1989; Şimşek et al., 2005; Şimşek
& Barto, 2008; Bagaria et al., 2020). Some methods use random options purely for exploration and
not planning (Dabney et al., 2020), and as a result, do not learn with experience. We work towards
a skill-discovery method scalable to modern deep learning approaches as opposed to these graph-
based systems or other approaches (Kompella et al., 2017).

Deep unsupervised skill discovery methods chiefly differ in their skill learning objectives. Some
have proposed using mutual information (MI) as an objective to learn maximally distinguishable
skills (Eysenbach et al., 2018). This has been built upon by adding predictability as a implicit
secondary objective to ensure the skills are well-suited for downstream planning (Sharma et al.,
2019). These can ultimately be used in a hierarchical controller to solve tasks without demonstra-
tions (Daniel et al., 2016). The inherent goal of these methods is to learn one level of behaviors
that are maximally different from each other in order to cover the space of behaviors (Warde-Farley
et al., 2018; Laskin et al., 2022). In this way, these methods attempt to incorporate all behaviors but
only at one level of abstraction; as a result, during skill acquisition, we cannot learn increasingly
complex behaviors. Furthermore, these methods may require learning a dynamics model (Sharma
et al., 2019) on the skills which might be difficult to scale to pixel-level tasks.

3

Algorithm 1 LaSH Skill Discovery

skillDAG = A
for each level do

Fill D with LaSH- Explore(skillDAG)
Train representation on D via 3
Reward label D using 3.2
Initialize new skill policies
for learnStep do

a ∼ random new skill action
Update D with transition (s, a, s’, r)
Update skills via RL

end for
Add skills to skillDAG, empty D

end for

Algorithm 2 LaSH-Explore

D = emptyBuffer()
O ← skillDAG
for exploreStep do

while episode is not done do
πo ← argmaxO V πo(s)
Rollout πo and add to τ

end while
D ← D ∪ τ

end for

Methods like these may not be well-suited for long-horizon exploration as they don’t build increas-
ingly complex options during training, and could thus generate a large amount of unhelpful basic
options (Gregor et al., 2016). We therefore elect for a state-coverage based objective inspired by the
graph Laplacian (Wu et al., 2018) as done by (Machado et al., 2017; Bar et al., 2020) and extended
to deep function approximation by (Klissarov & Machado, 2023). These methods are highly simi-
lar to successor-based objectives whereby a successor representation (Dayan, 1993; Kulkarni et al.,
2016b) is learned and is used to derive eigen-directions of state variation to act along (Machado
et al., 2018). These methods are referred to as covering-option approaches (Jinnai et al., 2019b;a)
and take advantage of the proto-value functions to generate new options (Jinnai et al., 2020; Ma-
hadevan & Maggioni, 2007a) but are often used for exploration and not planning. In an ideal case,
we should pursue learning skills that would be useful for accomplishing tasks though, not just for
exploring. Learning a policy upon options has a great number of benefits, mainly arising from faster
backups when running RL.

Our method, the Laplacian Skill Hierarchy (LaSH) is capable of capturing the benefits that covering-
options have for state exploration and is also capable of planning hierarchically with these multi-
level skills. LaSH is most similar to Deep Covering Eigen-options (DCEO) (Klissarov & Machado,
2023) but crucially creates multiple levels of abstraction in a skill-learning loop inspired by
(Machado et al., 2023; Machado & Bowling, 2016) and furthermore learns a tunable policy on the
skills as opposed to randomly triggering options for the purpose of exploration only as DCEO does.
Additionally, we operate under the reward-free setting whereas DCEO functions under knowing
the reward which violates our problem assumptions. We show that a method like this incrementally
picks up more and more complex purposes to better cover the state space, significantly helping solve
long-horizon, sparse-reward tasks.

3 BACKGROUND

An agent interacts in a Markov Decision Process (MDP) defined by state space S, action space A,
transition function P , and reward function R. The goal of the agent is to maximize the expected
discounted return Eπ[

∑∞
t=0 γ

trt], where γ ∈ [0, 1) is a discount factor and rt is the reward at time t.

We further augment this setup with the option framework thus making this a Semi-Markov Decision
Process (SMDP) that has variable time action length. Classically, an option is a temporally extended
action that is defined by a triple (I, o, β), where I ⊆ S is the initiation set, o : S → A is the option
policy, and β : S → [0, 1] is the termination function. This equips the agent to use both primitive
single-step actions as well as extended multi-step actions encoded by policies π : S → A. We use
I = S and we use β as a fixed option length L, thus making β a piecewise constant function 1.

β(s) =

{
1 if t ≥ L

0 otherwise
(1)

4

Our objective is to learn these options in a hierarchical manner via unsupervised environment inter-
action. We build off of work on covering eigen-options (CEO) and Deep CEO (DCEO) which rely
on two main steps: (1) learning a representation and corresponding reward as covered in Section
3.1, and (2) using the reward to derive options from RL, as covered in Section 3.2. DCEO runs
these two steps jointly assuming access to extrinsic reward, thus violating our problem assumptions
and not explicitly composing a hierarchy of skills. Furthermore, DCEO does not use these skills for
planning, but rather randomly triggers skills for exploration. We aim to modify the methods used in
DCEO in order to create composable skills at multiple levels in the reward-free setting, in order to
generally plan with these skills downstream.

3.1 REPRESENTATION LEARNING

We aim to find a state representation to help us form an intrinsic reward that gives rise to effective
skills. In our case, an effective skill is one that can (a) be composed to complete long horizon
planning tasks and (b) help cover the state space well for exploration of sparse reward. Machado
et al. (2017) showed that the Laplacian representation of temporal diffusion across an environment is
an effective signal for learning state-covering options. The Laplacian representation, encoded with
embedding function f : S → Rd, uses the eigenvectors of the graph Laplacian, L = D − A, where
D is the degree matrix and A is the adjacency matrix.

Specifically, f(s) = [v1(s), v2(s), ..., vd(s)] where each entry is the element in the ith eigenvector,
vi ∈ R|S| that corresponds to state s for some s ∈ S. Due to the nature of the graph Laplacian’s
discrete nature and large size, we use a spectral graph drawing objective as proposed by (Wang et al.,
2021) to identify the unique d smallest eigenvalued eigenvectors amenable for neural architectures
in Equation 2. As shown by Mahadevan & Maggioni (2007b), most cases of interest have value
functions that may not be smooth in the state space, but are smooth on the manifold associated
with it, and the smoothest Laplacian eigenvectors (i.e. PVFs) capture exactly this. In this way, our
options are motivated by geometric and spatial characteristics of the MDP state space which may
not be easily distinguishable in Euclidean space.

min
u1,...uT

d∑
k=1

k∑
i=1

(d− i+ 1)uT
i Lui s.t.

uT
i uj = δij ∀(i, j) ∈ N≤d × N≤d

(2)

Using a neural approximation of this where each ui(s) is a scalar output fi(s) from a neural network,
we get an optimizable expectation form in 3.

E(s,s′)∼D

d∑
k=1

k∑
i=1

(fi(s)− fi(s
′))2 + Es∼D,s′∼D

d∑
l=1

l∑
j=1

l∑
k=1

(fj(s)fk(s)− δjk)(fj(s
′)fk(s

′)− δjk)

(3)

This equation can be minimized with f parameterized by some neural network parameter set. The
first expectation aims to keep consecutive states close in expectation when sampling from the graph.
The second expectation serves as a regularizer to ensure different eigenvectors are orthogonal. Using
this objective, we can train the Laplacian embedding function, f .

3.2 OPTION LEARNING

Option learning refers to when the agent is tasked with developing skills based upon the represen-
tation it has developed from exploration (e.g. the Laplacian model f). We can simply create these
skills formalized as policies in the RL setting where the reward is the “eigen-purpose” reward as
described by Machado & Bowling (2016). Every dimension of the Laplacian representation corre-
sponds to an eigenvector which then corresponds to 1 skill. The goal of the ith skill’s policy is to
ascend or descend the Laplacian representation’s ith dimension output which can be described by
Equation 3.2

5

Random RND LaSH (skill only) LaSH

V(s)

P
visit

(s)

Figure 3: Top: Visitation histogram of states starting at the red with the goal displayed in green.
LaSH methods use our greedy exploration while others are random or RND induced. Bottom: The
value function when trained via DQN to reach the goal with sparse reward is shown.

ri,t = fi(st+1)− fi(st)

4 LAPLACIAN SKILL HIERARCHIES (LASH)

We now overview how to build and use a set of options for planning and exploration via LaSH. The
algorithm first runs in an unsupervised setting to discover skills and explore the environment, then
is task-supervised via a reward function and operates in a standard SMDP. During the unsupervised
phase, the algorithm explores the environment with its current skill library and learns an intrinsic
reward. Using the skill library as the action space, it then learns new options via RL on this intrinsic
reward, updates the skill library, and returns to the exploration step to repeat. The proposed explo-
ration depends on the skills learned thus far, and as a result, changes as we learn more options. As a
result, the Laplacians learned are induced by continually more complex policies. Our exploration is
structured and detailed in Algorithm 2 whereby we maximize the expected value of intrinsic reward.
In practice, we choose the number of times we re-learn the Laplacian and the corresponding new
options depending on the complexity of the environment.

Once these options are learned, we then construct an SMDP and run RL on an extrinsic task-specific
reward while having the action space as the set addition between A and the learned options. We
show the algorithm pseudocode in Algorithm 1 and the full algorithm in the Appendix 3.

Crucially, our algorithm works iteratively, continually creating new skills so knowledge is not over-
written over time but is rather saved for the agent to re-use. This allows LaSH to operate as a
module that can generate a set of skills at different levels of abstraction which can be combined in
new ways to solve a variety of new tasks. We also structure our exploration by greedily maximizing
value from chaining together skills, since we do not have access to extrinsic reward as DCEO may.
By composing skills to maximally cover the environment during exploration, we influence the next
Laplacian representation to find new temporal correlation patterns that can introduce new skills.

6

5 EXPERIMENTS

Method Success Rate Success Steps

LaSH 3-level 100 % 52980 ± 24381
LaSH 1-level 60 % 39950 ± 21813
DCEO 60 % 3820 ± 2625
Primitives 0 % N/A

Figure 4: We show the rate of suc-
cess and the steps it takes to suc-
ceed in opening the door for each
of the methods.

Iteration 3Iteration 1 With Reward

W
it
h
K
e
y

W
it
h
o
u
t
K
e
y

Figure 5: The visitation of random walks with the
learned skill-augmented action space after 1 iteration
and 3 iterations. We also show visitation induced
by the learned policy after optimizing for extrinsic
reward with LaSH. The visitations are separated into
two rows for when the agent has the key (in green).

5.1 PLANNING

To assess the capabilities of LaSH as a module to assist in planning to reach a goal, we use a
simple maze environment in the tabular setting with the coordinates as the state. We use the Mini-
grid (Chevalier-Boisvert et al., 2023) environment to create a 4-room environment with small doors
connecting the 4 chambers. We test by running DQN on different action spaces; specifically, the
primitive action space and the LaSH augmented action space after pretraining. We also experiment
with just the options from LaSH and RND with primitives as well. Episodic rewards are shown
Figure 2 along with Laplacian representations overlaid on the maze. This experiment shows that the
augmented action space learned from LaSH significantly helps the learning process when given a
downstream task. We display the visitation distribution with our greedy skill chaining as well as the
final learned value functions in Figure 3.

5.2 EXPLORATION

We also experiment with more complex longer-horizon tasks that require multiple LaSH levels.
Specifically, we assess whether LaSH assists in developing skills that can be composed to explore
and create plans. We test this by measuring whether random walks with learned skills from LaSH
actually result in completing a long-horizon task and how many training steps are required to do
so. In our case, the task is to open the door and the only way to do it is to interact with the door
while holding a key, which must be picked up in advance. We use the success rate and number of
steps taken to reach the sparse goal to assess the planning and exploration capabilities for the given
algorithm.

With prioritized replay (Schaul et al., 2016), standard techniques can eventually result in backing up
rewards from explored goals for a usable policy so we don’t consider episodic return as a metric. The
results are shown in Table 4 for LaSH with 1 level and 3 levels and 12 options total. The first level
of options often resulted in room-to-room navigation while later levels had object interaction. We
also show results for random primitive noise and DCEO, which learns 1 level of skills jointly with
the Laplacian representation and crucially has extrinsic reward access. Even without any extrinsic
reward access, LaSH more consistently achieves the goal than all other methods. Although, it can
be seen that DCEO achieves the reward very fast which corresponds to the runs where the algorithm
ran into the reward in the pretraining phase, encouraging it to seek out the goal more and move it
into the skills directly, unlike LaSH. Regardless, LaSH would remain more efficient if we wanted to
re-use it for solving multiple other tasks because DCEO would need to be re-trained for each reward.

7

Level 3 Skill

W
it
h
K
e
y

W
it
h
o
u
t
K
e
y

Level 2 Skill Level 2 Skill Level 1 Skill

Figure 6: Every column in this figure is a selected skill with arrows or letters (P for pick up and U
for unlock) as actions in a given state. The start is in red, a goal is in orange behind a locked door,
and the key is in green.

Visualizations of skill policies at multiple levels are shown in Figure 6. Considering that these
skills are run with some epsilon noise, we can roughly determine what they accomplish. We see
that low level skills have fairly uniform actions such as constantly moving left or right to traverse
inside rooms. As the LaSH iterations increase, we see more complex behaviors that are roughly
combinations of uniform behaviors in level-one. In fact, one level-two skill navigates to the key,
and the other executes a pickup action when close to the key. This is more complex than intra-room
movement and shows inter-room movement as well as interaction with objects. Finally, in level-3,
we again see composition of behaviors from earlier levels whereby the agent can roughly move to
the key, pick it up, and move to the door. It is important to note that these skills are discovered
without any extrinsic reward encouraging travel to the door or goal.

6 DISCUSSION

We present a method, LaSH , which uses a feedback loop of skill learning and skill-chained ex-
ploration to build a library of skills. Importantly, the hierarchy formed is well-suited for gradually
exploring the environment and preserving important options for downstream planning. Furthermore,
the greedy state-covering skill-chaining policy for learning the next level Laplacian proves useful
for incorporating a skill-composition inductive bias. Our method is capable of learning hierarchical
skills for planning, and exploring environments well especially in the sparse-reward case. Specifi-
cally, we compared it against similar reward-accessing methods and novelty methods for completing
sparse-reward tasks which it outperforms.

7 FUTURE WORK

There are limitations associated with this system, namely the high cost of using a full DQN model
per skill. This could be ameliorated with a large latent-variable model to encode shared information
between skills. Furthermore, exploring how skills can be fine-tuned to extrinsic rewards was not
explored due to the potential instabilities of learning a policy on options while learning the options
simultaneously. But, with an extrinsic reward, the skills in Figure 6 have the potential to be less
noisy and accomplish reaching the goal better. There are also many scalability studies to conduct in
order to move to continuous action spaces and high-dimension pixel input – we expect this to have
potential for more complex tasks as shown with DCEO and the capability of the graph-drawing
Laplacian objective to scale to visual tasks.

8

REFERENCES

Alexander, Vezhnevets, Volodymyr Mnih, John Agapiou, Simon Osindero, Alex Graves, Oriol
Vinyals, and Koray Kavukcuoglu. Strategic attentive writer for learning macro-actions, 2016.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture, 2016.

Akhil Bagaria and George Konidaris. Option discovery using deep skill chaining. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
id=B1gqipNYwH.

Akhil Bagaria, Jason Crowley, Jing Wei Nicholas Lim, and George Konidaris. Skill discovery for
exploration and planning using deep skill graphs. In 4th Lifelong Machine Learning Workshop at
ICML 2020, 2020. URL https://openreview.net/forum?id=-mvAo5hWNp.

Aijun Bai and Stuart Russell. Efficient reinforcement learning with hierarchies of machines by
leveraging internal transitions. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, pp. 1418–1424, 2017. doi: 10.24963/ijcai.2017/196. URL
https://doi.org/10.24963/ijcai.2017/196.

Amitay Bar, Ronen Talmon, and Ron Meir. Option discovery in the absence of rewards with mani-
fold analysis, 2020.

Marc G. Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi
Munos. Unifying count-based exploration and intrinsic motivation, 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld:
Modular & customizable reinforcement learning environments for goal-oriented tasks. CoRR,
abs/2306.13831, 2023.

Özgür Şimşek and Andrew Barto. Skill characterization based on betweenness. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), Advances in Neural In-
formation Processing Systems, volume 21. Curran Associates, Inc., 2008. URL
https://proceedings.neurips.cc/paper_files/paper/2008/file/
934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf.

Özgür Şimşek, Alicia P. Wolfe, and Andrew G. Barto. Identifying useful subgoals in reinforce-
ment learning by local graph partitioning. In Proceedings of the 22nd International Confer-
ence on Machine Learning, ICML ’05, pp. 816–823, New York, NY, USA, 2005. Associa-
tion for Computing Machinery. ISBN 1595931805. doi: 10.1145/1102351.1102454. URL
https://doi.org/10.1145/1102351.1102454.

Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended ϵ −
greedyexploration, 2020.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 17(93):1–50, 2016. URL http://
jmlr.org/papers/v17/15-188.html.

Peter Dayan. Improving generalization for temporal difference learning: The successor represen-
tation. Neural Computation, 5:613–624, 1993. URL https://api.semanticscholar.
org/CorpusID:12559116.

Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. In S. Hanson, J. Cowan,
and C. Giles (eds.), Advances in Neural Information Processing Systems, volume 5. Morgan-
Kaufmann, 1992. URL https://proceedings.neurips.cc/paper_files/paper/
1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning diverse skills without a reward function. 2018.

9

https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=B1gqipNYwH
https://openreview.net/forum?id=-mvAo5hWNp
https://doi.org/10.24963/ijcai.2017/196
https://proceedings.neurips.cc/paper_files/paper/2008/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2008/file/934815ad542a4a7c5e8a2dfa04fea9f5-Paper.pdf
https://doi.org/10.1145/1102351.1102454
http://jmlr.org/papers/v17/15-188.html
http://jmlr.org/papers/v17/15-188.html
https://api.semanticscholar.org/CorpusID:12559116
https://api.semanticscholar.org/CorpusID:12559116
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1992/file/d14220ee66aeec73c49038385428ec4c-Paper.pdf

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical rein-
forcement learning, 2017.

Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. Multi-level discovery of deep options,
2017.

Kevin Frans, Jonathan Ho, Xi Chen, Pieter Abbeel, and John Schulman. Meta learning shared
hierarchies, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control, 2016.

Jean Harb, Pierre-Luc Bacon, Martin Klissarov, and Doina Precup. When waiting is not an option :
Learning options with a deliberation cost, 2017.

Glenn A. Iba. A heuristic approach to the discovery of macro-operators. Mach. Learn., 3(4):
285–317, mar 1989. ISSN 0885-6125. doi: 10.1023/A:1022693717366. URL https:
//doi.org/10.1023/A:1022693717366.

Yuu Jinnai, David Abel, D Ellis Hershkowitz, Michael Littman, and George Konidaris. Finding
options that minimize planning time, 2019a.

Yuu Jinnai, Jee Won Park, David Abel, and George Konidaris. Discovering options for exploration
by minimizing cover time, 2019b.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=SkeIyaVtwB.

Jeff Johns and Sridhar Mahadevan. Constructing basis functions from directed graphs for value
function approximation. In Proceedings of the 24th International Conference on Machine Learn-
ing, ICML ’07, pp. 385–392, New York, NY, USA, 2007. Association for Computing Machin-
ery. ISBN 9781595937933. doi: 10.1145/1273496.1273545. URL https://doi.org/10.
1145/1273496.1273545.

Khimya Khetarpal, Martin Klissarov, Maxime Chevalier-Boisvert, Pierre-Luc Bacon, and Doina
Precup. Options of interest: Temporal abstraction with interest functions, 2020.

Martin Klissarov and Marlos C. Machado. Deep laplacian-based options for temporally-extended
exploration, 2023.

Alexander S. Klyubin, Daniel Polani, and Chrystopher L. Nehaniv. All else being equal be em-
powered. In Mathieu S. Capcarrère, Alex A. Freitas, Peter J. Bentley, Colin G. Johnson, and Jon
Timmis (eds.), Advances in Artificial Life, pp. 744–753, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg. ISBN 978-3-540-31816-3.

Varun Raj Kompella, Marijn Stollenga, Matthew Luciw, and Juergen Schmidhuber. Continual
curiosity-driven skill acquisition from high-dimensional video inputs for humanoid robots. Arti-
ficial Intelligence, 247:313–335, 2017. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.
2015.02.001. URL https://www.sciencedirect.com/science/article/pii/
S000437021500017X. Special Issue on AI and Robotics.

Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. Ddco: Discovery of deep continuous
options for robot learning from demonstrations, 2017.

Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan Saeedi, and Joshua B. Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation, 2016a.

Tejas D. Kulkarni, Ardavan Saeedi, Simanta Gautam, and Samuel J. Gershman. Deep successor
reinforcement learning, 2016b.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel.
Cic: Contrastive intrinsic control for unsupervised skill discovery, 2022.

10

https://doi.org/10.1023/A:1022693717366
https://doi.org/10.1023/A:1022693717366
https://openreview.net/forum?id=SkeIyaVtwB
https://doi.org/10.1145/1273496.1273545
https://doi.org/10.1145/1273496.1273545
https://www.sciencedirect.com/science/article/pii/S000437021500017X
https://www.sciencedirect.com/science/article/pii/S000437021500017X

Steven M. LaValle. Rapidly-exploring random trees : a new tool for path planning. The an-
nual research report, 1998. URL https://api.semanticscholar.org/CorpusID:
14744621.

Marlos C. Machado and Michael Bowling. Learning purposeful behaviour in the absence of rewards,
2016.

Marlos C. Machado, Marc G. Bellemare, and Michael Bowling. A laplacian framework for option
discovery in reinforcement learning, 2017.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. In International
Conference on Learning Representations, 2018. URL https://openreview.net/forum?
id=Bk8ZcAxR-.

Marlos C. Machado, Andre Barreto, Doina Precup, and Michael Bowling. Temporal abstraction in
reinforcement learning with the successor representation, 2023.

Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In Proceed-
ings of the 22nd International Conference on Machine Learning, ICML ’05, pp. 553–560,
New York, NY, USA, 2005. Association for Computing Machinery. ISBN 1595931805. doi:
10.1145/1102351.1102421. URL https://doi.org/10.1145/1102351.1102421.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework
for learning representation and control in markov decision processes. Journal of Machine
Learning Research, 8(74):2169–2231, 2007a. URL http://jmlr.org/papers/v8/
mahadevan07a.html.

Sridhar Mahadevan and Mauro Maggioni. Proto-value functions: A laplacian framework for learn-
ing representation and control in markov decision processes. Journal of Machine Learning Re-
search, 8:2169–2231, 10 2007b.

Amy McGovern and Andrew G. Barto. Automatic discovery of subgoals in reinforcement learning
using diverse density. In Proceedings of the Eighteenth International Conference on Machine
Learning, ICML ’01, pp. 361–368, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers
Inc. ISBN 1558607781.

Ishai Menache, Shie Mannor, and Nahum Shimkin. Q-cut—dynamic discovery of sub-goals in
reinforcement learning. In Tapio Elomaa, Heikki Mannila, and Hannu Toivonen (eds.), Ma-
chine Learning: ECML 2002, pp. 295–306, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
ISBN 978-3-540-36755-0.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning, 2018.

Ronald Parr and Stuart Russell. Reinforcement learning with hierarchies of machines. In M. Jordan,
M. Kearns, and S. Solla (eds.), Advances in Neural Information Processing Systems, volume 10.
MIT Press, 1997. URL https://proceedings.neurips.cc/paper_files/paper/
1997/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction, 2017.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with learned
skill priors. In Conference on Robot Learning (CoRL), 2020.

Doina Precup. Temporal abstraction in reinforcement learning. PhD thesis, 2000.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay, 2016.

11

https://api.semanticscholar.org/CorpusID:14744621
https://api.semanticscholar.org/CorpusID:14744621
https://openreview.net/forum?id=Bk8ZcAxR-
https://openreview.net/forum?id=Bk8ZcAxR-
https://doi.org/10.1145/1102351.1102421
http://jmlr.org/papers/v8/mahadevan07a.html
http://jmlr.org/papers/v8/mahadevan07a.html
https://proceedings.neurips.cc/paper_files/paper/1997/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1997/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018. URL http://incompleteideas.net/book/the-book-2nd.
html.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1):181–211, 1999.
ISSN 0004-3702. doi: https://doi.org/10.1016/S0004-3702(99)00052-1. URL https://www.
sciencedirect.com/science/article/pii/S0004370299000521.

Chen Tessler, Shahar Givony, Tom Zahavy, Daniel J. Mankowitz, and Shie Mannor. A deep hierar-
chical approach to lifelong learning in minecraft, 2016.

Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning, 2017.

Kaixin Wang, Kuangqi Zhou, Qixin Zhang, Jie Shao, Bryan Hooi, and Jiashi Feng. Towards better
laplacian representation in reinforcement learning with generalized graph drawing. In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 11003–11012. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/wang21ae.html.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards, 2018.

Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with
efficient approximations, 2018.

Mengda Xu, Manuela Veloso, and Shuran Song. ASPire: Adaptive skill priors for reinforcement
learning. In Thirty-Sixth Conference on Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=sr0289wAUa.

12

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://www.sciencedirect.com/science/article/pii/S0004370299000521
https://proceedings.mlr.press/v139/wang21ae.html
https://openreview.net/forum?id=sr0289wAUa

A APPENDIX

Algorithm 3 LaSH Skill Discovery

skillDAG = {}
Append primitive actions to DAG
for level ≤M do

currentSkills = {}
D ← emptyBuffer()
for exploreStep ≤ Elevel do

if skill not yet chosen or running skill has ended then
πo ← explorationPolicy(skillDAG) ▷ Sample a skill for exploration

end if
a ∼ πo ▷ Run the selected skill
Execute a in state s and observe s’
Update D with transition (s, a, s’)
Train Laplacian Representation on D via 3
Reward label D using eigen-purpose objective

end for
Initialize Nlevel skill policies into currentSkills
for learnStep ≤ Slevel do

if skill not yet chosen or running skill has ended then
if N (0, 1) < ϵ then

πo ← explorationPolicy(SkillDAG + currentSkills)
else

πo ← random element from currentSkills
end if

end if
a ∼ πo ▷ Run the selected skill
Execute a in state s and observe s’ as well as intrinsic reward
Update D with transition (s, a, s’, r)
Update Options via 3.2

end for
Append learned currentSkills to skillDAG

end for

13

	Introduction
	Related Work
	Background
	Representation Learning
	Option Learning

	Laplacian Skill Hierarchies (LaSH)
	Experiments
	Planning
	Exploration

	Discussion
	Future Work
	Appendix

